If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (8x3 + 20x2 + 36)(2x + 6) = 0 Reorder the terms: (36 + 20x2 + 8x3)(2x + 6) = 0 Reorder the terms: (36 + 20x2 + 8x3)(6 + 2x) = 0 Multiply (36 + 20x2 + 8x3) * (6 + 2x) (36(6 + 2x) + 20x2 * (6 + 2x) + 8x3 * (6 + 2x)) = 0 ((6 * 36 + 2x * 36) + 20x2 * (6 + 2x) + 8x3 * (6 + 2x)) = 0 ((216 + 72x) + 20x2 * (6 + 2x) + 8x3 * (6 + 2x)) = 0 (216 + 72x + (6 * 20x2 + 2x * 20x2) + 8x3 * (6 + 2x)) = 0 (216 + 72x + (120x2 + 40x3) + 8x3 * (6 + 2x)) = 0 (216 + 72x + 120x2 + 40x3 + (6 * 8x3 + 2x * 8x3)) = 0 (216 + 72x + 120x2 + 40x3 + (48x3 + 16x4)) = 0 Combine like terms: 40x3 + 48x3 = 88x3 (216 + 72x + 120x2 + 88x3 + 16x4) = 0 Solving 216 + 72x + 120x2 + 88x3 + 16x4 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '8'. 8(27 + 9x + 15x2 + 11x3 + 2x4) = 0 Ignore the factor 8.Subproblem 1
Set the factor '(27 + 9x + 15x2 + 11x3 + 2x4)' equal to zero and attempt to solve: Simplifying 27 + 9x + 15x2 + 11x3 + 2x4 = 0 Solving 27 + 9x + 15x2 + 11x3 + 2x4 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| x(x+4)x(x+2)=2*2+12 | | x^2+16=10 | | 6(14x)=30 | | 7(x-2)+16=3(2+3x) | | 2x^2+5x=35+14x | | 8w-15=4w-3 | | 232x=90-900x^2 | | 232x=90-900 | | 7(3x+10)=5(1x+5) | | 235x-90=90 | | 3x+4(x+1)=5x-8 | | 232x=90 | | 4x^2=12x+40 | | 7r-5=2r+5 | | -4x-(-10+8x)=(8-16x)-(14-6x) | | 4-3(x-4)=4-3x | | y(2y+7)=9(2y+7) | | 90x=0 | | 12-4y=-2y | | 6d=4d-8 | | (x^2+15x+56)(x+8)= | | 6d=4d-83 | | 3x^2-7x=-4 | | (4x^2+3x-5)(x+3)= | | 2x(2x-5)=3(2x-5) | | 5n+4=7n | | x(2x+3)=5(2x+3) | | 5-3w=2w | | 27x^3+27x^2+9x=0 | | 39-4x=5x+19 | | (x+2)(x-2)=3x | | 9x^2+30x-24= |